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Abstract 

The joint probability distribution method is applied in 
order to estimate phases when part of the crystal 
structure is correctly positioned. The mathematical 
approach is briefly described and the conclusive 
formulas are compared with those given by previous 
authors. 

Symbols and abbreviations 

Throughout the paper a number of symbols will find 
frequent application. For the sake of simplicity they are 
here listed together. 

h - (h,k,l): vectorial index of a reflection. We will also 
use k and b + k. 
f(h):  atomic scattering factor. The thermal factor is 
included: anomalous dispersion is not considered. 
Fh: structure factor with vectorial index h. 
N: number of atoms in the unit cell. 
p: number of atoms (symmetry equivalents included) 
whose positions are a priori  known. 
q: number of atoms (symmetry equivalents included) 
whose positions are unknown: q --- N - p .  
F h, Eh: structure factor and normalized structure factor 
with vectorial index h. 
(Ph' (Pk' (Ph + k' phase values of Eh, Ek, E h + k" 

Rh, Rk, Rh + k: moduli OfEh, Ek, Eh+ k" 
~) : (/)h -1- (Pk - -  (Ph + k" 
E p ,  h, E p ,  k, Ep, h+ k : pseudo-normalized structure 
factors of the partial structure with p atoms in the unit 
cell. 

0108-7673/83/050685-08501.50 

Rp, h, Rp, k'  Rp, h + k : moduli of Ep, h, Ep, k' E p ,  h + k" 

% , h ,  (Pp, k, ~0p, h + k = phase values of  Ep, h, Ep, k, Ep, h+ k. 
% : % , h  -k- (Pp, k - -  (Pp, h + k" 
Eq, h, Eq, k, Eq, h + k : pseudo-normalized structure 
factors of the unknown part of the structure. 
Rq, h, Rq, k, Rq h + k = moduli of  Eq, h, Eq, k, Eq h k. .' . . _~ + 

N 

• 'q(h)= Z fj2(h) • 
j = p + l  

tj(h): fj(h)/[ IFp, h 12 + 2;q(h)] x/2 for the j th  atom. 

N 

b(h) = Z t](h) = Z'q(h)/[ Irp, h 12 + ,~'q(h)]. 
j = p + l  

N 

c :  ~ tj(h) tj(k)tj(h + k). 
j = p + X  

Other locally used symbols are defined in the text. 

1. Introduction 

Main (1976) generalized Cochran's (1955) formula for 
the phase probability of a triple product in order to 
exploit some a priori  knowledge about the structure. 
He considered four kinds of information: (a) randomly 
positioned atoms; (b) randomly positioned and ran- 
domly oriented atomic groups; (c) randomly positioned 
but correctly oriented atomic groups; (d) correctly 
positioned atoms. 

A mathematical derivation of Main's formula was 
given by Heinerman (1977) (see also Heinerman, 
Krabbendam & Kroon, 1977). In its formulation the 
normalized structure factor E h is defined by 
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686 FROM A PARTIAL TO THE COMPLETE CRYSTAL STRUCTURE 

F. 
E h _ , (I) 

<lFhl2~ '/2 /p.r.v. 

where (IFhl2>p.r.v. denotes the average of IFh 12, the 
variable being the primitive random variables. 

If a group of p atoms is assumed to be correctly 
positioned and the other N - p atomic positions are the 
primitive random variables, (1) may be written in P1 or 
P1 as 

F. 
g h 

i i  N \1 /2  ,~= 1 f / fJ  exp 27ffh(r' - rJ))p.r.v" 

Fh 
= . (2) 

[IFp, h 12 + 2q] 1/2 

We define here Ep, h and Eq, h: 

F ,h Fq, h 
go, h---- [iFp, hl2 + Zq],/2' Eq, h= [lFp, hl2 + Xq],/2" 

We explicitly note that Ep, h is not a variable in our 
approach and always IEp, hl _< I. On the other hand, 
Eq, h is a variable, but it is not a normalized structure 
factor stricto sensu. Indeed, <lEq, hl2> = b(h) < 1. For 
the sake of simplicity in the text we will denote Ep, h and 
Eq, h as pseudo-normalized structure factors. 

When p atoms have a priori known positions, Main's 
formula reduces to 

1 
P(~lRh, Rk, Rh+k) ~ ~ e x p { a  c o s ( ~ -  q)}, (3) 

2rdo(Q) 

where 

Q exp(iq) = 2RhRkRh+ k(Rp, hRp, kRp, h+ k exp icpp + c) 

and 1 o is the modified Bessel function of order zero. In 
P i  Main's formula leads to 

P+ (EhEkEh + k) 

~_0"5  + 0-5  tanh(RhRkRh+kEp, hEp, kEp, h+k + C), 

(4) 

where P+(EhEkEh+k) is the probability that the 
product EhEkEh+ k is positive. Heinerman observed 
that (3) and (4) were not quite satisfactory and 
concluded that only high-order terms of the distri- 
butions could improve the accuracy of the formulas. 

In this paper (§§2, 3, 4, 7) we introduce a 
mathematical approach which does not coincide with 
Heinerman's procedure and leads to conclusive for- 
mulas very promising for practical applications. For 
the sake of brevity we do not give a full account of our 
procedure: the reader is referred to a recent book 
(Giacovazzo, 1980) for the basic ideas. We only say 
here that: (a) the atomic positions are assumed to be 
the random variables; (b) any normalized structure 

factor E h is considered as the sum of a fixed term Ep, h 
arising from the atoms with known positions and a 
random term Eq, h arising from the atoms with unknown 
positions: E h = Ep, h + Eq, h" 

In the text we give explicitly the characteristic 
functions of the various distributions because they do 
not coincide with those given by Heinerman. In 
addition to Main's formula other procedures are widely 
used for recovering the full structure from a partial. In 
§5 we briefly discuss them in the light of the results here 
presented. In §8 the use of our theory in the 
determinantal approach is described. Practical con- 
siderations are given in § § 6 and 9. 

2. The conditional probability density P(Ehl Ep, h) and 
related distributions 

In this section our approach is applied to obtain some 
results concerning P(EhlEp. h) and related distributions. 
The results are not new, however they are stressed 
because: (a) they are given in terms of the normalized 
and pseudo-normalized structure factors defined by (2); 
(b) they play a central role in some widely used 
procedures which try to obtain the whole structure 
from a partial one. 

For the sake of brevity E and Ep will denote E h and 
Ep, h. We will deal here only with P[  and PI" the 
corresponding distributions can be applied to all 
centrosymmetric and non-centrosymmetric space 
groups, respectively. 

ei 
The characteristic function of the distribution 

P(EIEp) is 

C(u) ~_ exp(iuEp) exp -~- b , 

where u is a carrying variable associated with E. Then 
+co 1: 

P(E]Ep) ~_ ~ C(u) exp(-iuE) du 
--00 
1 [ ( E -  Ep) 2 

- (27rb),/---------- S exp ~ 2b (5) 

Equation (5) is a normal distribution of type 
N[Ep;b'/2]: Ep is the expected value of E and b ~/2 the 
standard deviation, b always lies in the interval (0,1). 
Furthermore, b = 1 i f p  = 0: then Ep = 0 and (5) 
coincides with Wilson's distribution; b = 0 if p = N: 
then (5) reduces to a delta function centred on E = Ep. 

From (5) the distribution P(IEIIEp) is readily 
obtained: 

/ j ) 
(6) 
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The distribution (6) is equivalent to a previous result 
obtained by Srinivasan & Chandrasekharan in 1966 
(for reference see Srinivasan & Parthasarathy, 1976, p. 
86) in terms of structure factors. 

The probability that E and E v have the same sign is 
given by 

IEEvl 
P(s = s , )  ~-- 0 .5  + 0 .5  tanh ~ ,  (7) 

b 

which is equivalent to a previous result obtained by 
Woolfson (1956, equation 4) in terms of unitary 
structure factors. 

P1 

The characteristic function of the distribution 
P(A,B lAp,By) is 

C(u,v)'~exp i(uAp + vBp)exp[-(u---4 + ~ )  b], 

where A, A v and B, B v are the real and imaginary parts 
of E and E v respectively, u and v are carrying variables 
associated with A and B. Then 

P(A,BIAp,Bp) 

I _ ~ exp ~ [(A - A,) 2 + (B - B,) 2] , (8) 

which is a two-dimensional normal distribution of two 
uncorrelated random variables with identical standard 
deviation (b/2) u2. In polar form (8) is written as 

P(R,0IR ,0,) 

- rrb exp ~ [R 2 + RE-- 2RR, cos(0--  0p)] , (9) 

which was first obtained by Sim (1959) in terms of 
structure factors. From (9), (10) and (11) are readily 
obtained: 

2R { (R2+R2) /o(G), (I0) P(RIRv'o) " --ff -- exp b 

1 
P(olR,Rp, Ov) "- 2rJo(G) exp[G cos(o Or)], (11) 

where G = 2RRp/b. Equation (11) is a yon Mises 
distribution: Op is the expected value of O and the 
reliability of the distribution O - Ov increases with G. 

3. The eondltional joint probability distribution 
P(Eh, Ek, Eh + klEp, h, Ep, k, Ep, h + k) and related 

distributions in Pi 

Let us denote 

E, = E h ,  E2 : E k ,  Ea : E h  + k, 

Ep, = Ep, h, E,2 = Ep, k, Ep3 = Ep.h+ k. 

The joint probability distribution 

P(E ,,E2,E3[Ep,,Ep2,Ep3) 

retaining only terms up to I/(q) ° order is 

[P(E1,E2,E3].. ")] I/(q) ° 
I (E,- E,,)' 

~- (2~z) -a/2 (b, b 2 b3)  -1/2 exp -- 
2b, 

_ (E z -- E,z) 2 _ (E, -- E,3) 2 I (12) 
2b 2 2b3 J ' 

which is a three-dimensional normal distribution. Ep,, 
Ep2, Epa are the expected values of E,,  E2, E a, 
respectively and bl/2, b~/2, b~/2 the standard deviations. 
No correlation coefficient exists among the variables so 
that they may be considered as independent of one 
another. From (12) no information additional to that 
provided by (5) may be obtained for a single E t. We 
note that bi = 1, i = 1, 2, 3, when p - 0: then (12) 
reduces to the product of three Wilson's distributions. 
On the other hand, b I = 0, i - 1, 2, 3, if p = N: then 
(12) reduces to the product of three delta functions 
centred on Eo,, Ep2, Ep3. 

Additional information may be obtained if terms of 
order 1/q t/2 are taken into account in the characteristic 
function of the trivariate distribution. Such terms will 
perturbate the distribution (12) by introducing a 
correlation coefficient among the variables. The charac- 
teristic function is then 

C(ld 1, U2,Z/3) 

~_exp{i(UlEp, + U2Ep2 + u3Ep3)} 

(-- U21U2 U2 icUlU2U3) 
x exp b,T-a2T-b,T- 

where u,, u2, u3 are carrying variables associated with 
E,,  E2, E3, respectively, and b,, b2, b3 stand for b(h), 
b(k), b(h + k). 

After some calculation we obtained 

P(E,,E2,E3[Ep,,Ep2,Ep3) 
(E,-  Ep,) 2 

(2re) -3/2 ( b ,  b 2 b3)  -1/2 exp - -  2 b l  

( E  2 - -  Ep2)  2 ( E  3 - Ep3)  2 

2b 2 2b 3 

c (E, -- Ev,) (E 2 - Ev2) (E 3 - Ev3) ]. 
+ b, b2b------- ~ 

1 

(13) 

Equation (13) coincides with the trivariate distribution 
obtained by Karle & Hauptman (1956) when p = 0 
(see {} 6). In Appendix A we give some distributions 
related to (13) which are used in this paper. We only 
state here: 
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(a) the conditional expected value of Et: 

( <E, >IE2,E3,Eu,,E,2,Ep3) 
c 

~_ E u' + ~ (E2 - Ep2) (E3 -- Et,3). (14) 
b2ba 

In contrast with (5), the expected value of E, is no 
longer Ep, but Ep, plus an additional contribution often 
larger than Ep,; 
(b) the conditional expected value of E2 E3: 

c 
+ (Ex- E;,). 

(15) 

Equations (14) and (15) will be useful in the 
determinantal approach, as described in § 8. 

In practical direct procedures the estimation of the 
signs of structure factors or of their products are 
usually required. Let us now calculate the probability 
that 

(El -- Ep,)(E 2 -- Ep2) (E3 -- Ep3) > 0. 

From the distribution (13) we obtain 

. ) [EqlEq2Eq31 , (16) 
bx b2 b3 

P+(Eql Eq2 Eq3 > O) 

~- 0" 5 + 0" 5 tanh 

P(s, s2s3 = + ) =  P(+,+,+)  + P ( + , - , - )  

+ P ( - , + , - )  + P ( - , - , + ) ,  

P(s, s 2 s 3 = - ) =  P ( - , - , - )  + P( - ,+ ,+ )  

+ P (+ , - ,+ )  + P(+ ,+ , - ) ,  

from which the normalized sign probability formula 
may be derived: 

p(sls2s3 = +)/[p(sls2s3 = +) + P(sls2s3=--)] .  (17) 

Such an approach does not lose information as (16). In 
a similar way the probabilities that E2 E3, E, E2, El E3 
have positive sign or the probability that E,E2E 3 and 
Ep, Ep2 Ep3 have the same sign may be calculated. 

The sign probability (17) is rather prolix and, for the 
sake of simplicity, we do not give here its explicit 
expression. However, it is not very useful in the practice 
where a more immediate application has the estimation 
of the sign probability of E, when E2, E3, Epl, Ep2, Ep3 
are known. We obtain 

P+(EI) ~ 0.5 + 0.5 tanh levi[ + ~ b l  b2 b3 

Equation (18) is basic for practical applications and 
will be discussed in § 6. 

which gives a first indication of the differences between 
Main's and our theory. According to (4), 
E, E2E3Ep, Ep2Ep3 is expected to be positive if: (i) 
EpxEp2Ep3 is positive; (ii) Ep, Ep2Ep3 is negative and 
c > RIR2R3R,,tRp2Rp3. According to (16), 

(E,- Epl)(E 2 -- Ep2)(E3- Ep3) 

is always expected to be positive. An important point to 
be emphasized is the following: when from the 
trivariate distribution (13) we pass to (16) we lose the 
information about the correlations between the pairs E t 
and Epv In practice, the application of (16) reduces the 
problem of finding the sign of a triplet in an N-atom 
structure with p atoms in known positions to the 
problem of estimating the sign of a triplet in a structure 
with q atoms [see the analysis of the factor c/(bl b2 b3) 
in § 6]. Thus (16) is nothing but the classical Woolfson 
relationship which is not very useful in this context 
unless the information about the correlations of the 
pairs E i and Ept are introduced in the procedure by 
additional information. 

The probability that the sign of E,E2E 3 is positive 
may be calculated via (13). Let P(s,,s2,s 3) be the value 
of (13) when the signs s,, 52, Sa are associated with 
Et, E2, E3, respectively. Then 

4. The conditional joint probability P(Rh, Rk, Rh~, 07h, 
qlk, ~1}~'~'~, Rp, h, Rp, k, Rp,-ff~, ~p,h, ~)p,k, ~p,~'+"k) in PI  

Let Pi, %, i = 1, 2, 3, be carrying variables associated 
with Ri, ~0i, i = 1, 2, 3, respectively. The characteristic 
function of the distribution P(R~, tp~, i = 1, 2, 3lRp~, ~0p~, 
i = 1, 2, 3) is 

C(pg, ~,  i = 1, 2, 3) 

(' ) ~_ exp - ~  (b,p21 + b2P~ + b3P~) 

i{p, Rp, cos((ol - ~1) × exp 

+ P2 Rp2 cos (~02 - ~2) 

+ P3 Rp3 cos(~03- ~'3) 

' / 4P, P2P3 cos(N, + N2 + N3) • 

Its Fourier transform gives the required distribution 
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P(R ,,R 2,R 3, ~,, (,02, ~3 [ Rpl ,Rp2,Rp3, ¢pl, ¢p2, ~p3) 

{ , ~ l  ~'i ".'(~)-3(blb2b3)-'R1R2R3ex p - -£-[R~ + R2i 
t=1 

-- 2RiRpi cos(¢i - ¢~,i)] 

2c 
+ - -  [RxR2R3 c°s(¢1 + (02 + ¢3) 

bl b2 b3 

-- RplRp2Rp3 coS(¢pl + ¢p2 + ¢p3) 

-RplR2R3 cos(¢pl + ¢2 at- ¢3) 

- R~ Rp2R3 c°s(¢I + ¢̀ 02 + ¢3) 

-R1R2Rp3 c°s(¢l + ¢2 + ¢p3) 

+ RpIRp2R3 c°s(¢pl + ¢p2 + ¢3) 

+ RpIR2R`03 coS(¢pl + ¢2 + ¢,03) 

+ R, Rp2 Rp3 cos (¢1 + ¢,v2 -- ¢p3)] }. (19) 

Equation (19) is basic for the following applications. It 
coincides with the classical trivariate distribution of 
Karle & Hauptman when p = 0. In Appendix B we 
give some distributions related to (19) of which use is 
made in this paper. We only state here: 

(a) the conditional expected value of E 2 E3: 

<(E2E31...)> = ( R 2 R  3 exp i(¢ 2 + ¢3)> 

C 
-- Ep2 Ep3 + ~ (E,- E,1); (20) 

(b) the conditional expected value of ¢1: 

P(¢1[¢2, ¢3, Ri, Rpi, ¢pi, i = 1, 2, 3) 

~_ [2zd0(G)]-i exp[a c0s(¢1 - 0],  (21) 

where G 2 = a 2 + a22, 

fR,  l 
a, = 2R,[  b, cos ¢;1 + ~ [R2Ra COS(02 -~" ¢3) 

bi bE b3 

- RpER3 c°s(¢p2 + ¢3) - R2Rp3 c°s(¢2 + ¢pa) 

+ RpERp3 c°s(¢`02 + ¢pa)]}, 

a2= 2R,~ bl sin ¢p, + __b, b2b--~[-gER3sin(¢2 + Ca) 

+ Rp2R3 sin(¢p2 + Ca) + R2Rp3 sin(¢2 + ¢p3) 

- RpERpa sin(¢`02 + ¢p3)]}, 

cos ~=  a,/G, sin ~=  a2/G. 

Considerations about the use of (21) are made in § 6. 

5. A comparison with preceding approaches 

In the light of the theory so far described we briefly 
analyse in this section some theories or practical 
procedures aiming at recovering, via the reciprocal 
space, the entire structure from a partial one. 

(a) Weighted Fourier syntheses 

Woolfson (1956) and Sim (1960) (see also Main, 
1979) suggested that the use of Fourier syntheses with 
weighted terms WIFl(expi¢p) would reveal the un- 
known atomic positions better than the usual syntheses 
with IFI exp(i¢p). These and related Fourier methods 
use essentially the information contained in the distri- 
butions (7) and (11). 

(b) Tangent recycling methods (Karle, 1970; see also 
Hull & Irwin, 1978) 

A phase % is accepted if IFpl > r/IFI, where r/is the 
fraction of the total scattering power contained in the 
fragment and where IFI is associated with an 
IEI > 1.5. This approach empirically exploits distri- 
butions (7) and (11) because it aims to select high 
products I Ep El. Tangent recycling uses a large starting 
set of ¢p'S in order to compensate for wrong 
estimations. In each tangent cycle the a priori 
structural information is only used for defining a good 
starting set. 

(c) Tangent recycling methods applied to difference 
structure factors 

In the procedure proposed by Beurskens, Prick, 
Doesburg & Gould (1979) difference structure factors 
AF = (IFI - IFpl)expi¢p are calculated and, in 
favourable cases, accepted for a first estimation of Fq. 
Weighted tangent formula is applied to the AF values in 
order to convert them to more probable Fq values. 

A related approach was suggested by Hull & Irwin 
(1978). From (11) the expected cosine value 

[ 2RRp 

follows. Since R 2 = R E + R 2 + 2RRp c o s ( ¢ -  ¢`0), the 
expected value of R 2 is 2 __ R 2 Rq -- + Rp + 
2RRpD,(2RRp/b). The normalized structure factors 
are input for a weighted tangent formula refinement. 
For both these procedures it may be observed: (1) they 
involve difference structure factors in tangent refine- 
ment instead of structure factors, and introduce the 
information about the correlation between E and Ep by 
suitable statistical criteria based on (7) and (11). 
According to our theory they appear more theoretically 
sound than procedure (b); (2) unfortunately they are 
unable to use the true Fq's and strict theoretical 
distribution involving contemporaneously El, Ept, ¢1, 
¢pi" 
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6. Practical considerations about conclusive formulas 

Let us suppose that (02, (03, Ri, Rpi, (0pi, i = 1, 2, 3, are 
known. Centrosymmetrical or non-centrosymmetrical 
phases (0, can be estimated via (18) or (21), respect- 
ively. The parameters c and b i play a central role in the 
formulas. The bi's are the expected values of IEpe 12. In 
the statistical sense small values of bg favour a reliable 
estimation of (0,. 

If p = 0 then the b~'s assume the maximum value 
(= 1) and 

1 c = fj(h) fj(k) f j(h + k) fj2(h) 
j= l  "= 

Furthermore, assuming that all the atoms have the 
same unitary scattering factor, c reduces to [o'3/a~/21 N, 
where 

N 
[arlN= Y Z; 

j= ,  

and Zj is the atomic number of j .  Consequently, (18) 
and (21) reduce to the widely used Woolfson and 
Cochran formulas. 

In general, the reliability of a phase indication via 
(18) and (21) depends on the cooperative effect of two 
terms: the first, of order 1/(q) °, and the second, of order 
1/(q) 1/2, having the coefficient 

C N 
- -  -- Y fj(h) fj(k) f j(h + k) [2~a(h)] -'/2 
b, b 2 b 3 j=p+ I 

x [Za(k)] -1/2 [Xa(h + k)] -1/2 

x {[,G,, ~ + G(h)] [,G~, 2 + G(k)] 

X [Itp312 + `Fa(h + k)] 

x [Za(h) Xa(k)Xa(h + k)]-1} '/2 

= A x B. (22) 

For a simple analysis of (22) we suppose again that all 
the atoms have the same unitary scattering factor. Then 
A is equal to [th/a~/2]q < [~73/0"~/2lN (for equal atoms 
A = 1/qV2). The value of B is larger than unity and 
depends on the ratios I Fpil/I,Fail. 

In the practical applications B may often assume 
values larger than 2 or 3. We conclude that the 
contribution of the term of order 1/(q) '/2 is in general 
not negligible with respect to that of order 1/(q) °. Such 
a property is strengthened if more than one triplet is 
available for estimating ~01 (see § 7). Important special 
cases in which the contribution of order 1/(q) 1/2 plays a 
central role occur when the known part of the structure 

does not evenly contribute to all parity groups. Then E, 
may be large but Ep, may be near zero (i.e. a sublattice 
extinct reflection). In such cases (18) and (21) may 
provide a reliable phase indication for (0, provided the 
real part of 

2c 

bl b2 b3 
- -  (E 2 - Ep2 ) (E3- Ep3 ) 

is large enough. 

7. The estimation of Ct via more triplets 

Suppose that more triplets h, k i, h + ki may be 
exploited in order to estimate (oh. Then, from the 
distribution P( E  h, Ek,, E h + k,, Ek2, Eh + k2, " ' ,  Ep, h, El,,k,, 
Ep, h.  k, Ep, k,, Ep, h + k2' "' ') '  we obtain: 
(a) for the centrosymmetric case: 

P+(E,)~_0.5 + 0.5 tanh IN, l[ b, + ~ 
blb2b3 triplets 

We note that proper values of C/blb2b 3 must be 
calculated for each triplet; 
(b) for the non-centrosymmetric case: 

P((0,I---) ~- [2rdo(a)]-' expIacos((0,-- ~1, (24) 

2 where a 2 = a 2 + a2, 

fR,, 
a , = 2 R , [  b, cos(0;, + ~ b, b2b3 

triplets 
x [R2R 3 cos((02 + (03) - Rp2R3 c°s((0u2 + (03) 

--  R 2 R p 3  C0S((02 + (0p3) 

+ Rp2 Rp3 cos ((0p2 + (0p3)] }, 

a 2 = 2 R ,  sin %1 + ~ b, b2b3 
triplets 

x [ -R2R 3 sin(~o 2 + (03) + Rp2R3 sin((0p2 + (03) 

+ R2Rp3 sin(~02 + %3) 

- Rp2 Rp3 sin ((0p2 + (093)1}, 

cos ~ =  a, /a ,  sin ~= a2/a. 

From (24) the tangent formula (25) arises: 

tan (0/7, ~' a , /a  2. (25) 



CARMELO GIACOVAZZO 691 

8. Use of the partial structure in the determlnantal 
approach 

Let us conform our notation to that usually employed 
in the determinantal approach• Let h01 ' be a 'generating' 
reciprocal vector and hi, i, = h0t - ho~. In accordance • 2, 1 
with (15) and (20) the condmonal expected values 
<(Eo,.EoJE,.o,: E,.o,: E,.,: E~.,.,,)> a r e .  

(i) for centrosymmetric space groups: 

<Eo,,Eoi~l'' "> - Ep.o, ,  G . o t ~  + - -  

where 

C 

b(hi, i,) (Ei'i' - Ep. i, i,)', 

N 

c = Z tj(hoi,) tj(h%) t:(hi,12); 
J=p+l 

(ii) for non-centrosymmetric space groups: 

C 
, E* - - ( E i * , - E ~ * , , i ~  ). (Eo, E~i~I... ) = Ep o,, v.o,, + b(h,,i ) 

To obtain higher-order relationships dependent only 
upon the covariance we invoke the central-limit 
theorem which leads to the following conditional 
distributions (Tsoucaris, 1970): 
(i) for non-centrosymmetric space groups: 

P ( E o ,  , . . . ,  Eoml.  . . ) ~ 7[ - m  D m '  exp(-Qm), (26) 

where 

large crystal structures, and for the improvement of 
electron-microscope images (Ishizuka, Miyazaki & 
Uyeda, 1982). 

The additional following practical considerations are 
a consequence of the present theory: (a) the crystal 
structures often have different parity groups of reflec- 
tions with different average values of the intensities. 
Renormalization in order to obtain always (IEI 2> = 1 
for each parity group is not advised, in order to avoid 
violation of Sayre's equation; (b) very often the 
application of triplets to such structures provides a 
partial structure. Then reflections should be renor- 
malized in accordance with (2) and the formulas 
described in §§ 3, 4, 7, 8 should be applied. Those 
formulas are derived in P i  and P1 but can be applied in 
all centrosymmetric and non-centrosymmetric space 
groups, respectively; (c) space-group algebra is not 
taken into account in this paper. Thus the theory does 
not hold for special cases such as those described by 
Giacovazzo (1980, pp. 286-287) and by Pontenagel & 
Krabbendam (1983). 

The author is indebted to Professor H. Burzlaff for 
helpful discussions during a workshop held in Erlangen 
about this subject. Thanks are also due to referees 
whose suggestions improved this paper. 

APPENDIX A 

m 

am = Z 
11,12= 1 

(E~/1 - -  E ~  0/1) D t l l 2 ( E o ,  2 - fp.ol2) ( 2 7 )  

(ii) for centrosymmetric space groups: 

P(E01, ..., E o m [ . . . )  "~ _ _  
1 1 

(28) (2if)m/2 Ol/2 expt--~m).  

D m is the determinant of the correlation matrix and 
Dl,12 is an element of the inverse correlation matrix. 
Now the phases of the generating reflections may be 
calculated by standard methods. For example, the 
expected value of the phase of any generating reflec- 
tion, say E0r, may be calculated by the statistical 
regression of E0r upon all others (de Rango, Tsoucaris 
& Zelwer, 1974). The specific case m = 2 is discussed 
in Appendix C. 

9. Conclusions 

A probabilistic theory is described which gives new 
insight into the methods aiming at recovering the full 
structure from a partial one. The new approach exploits 
the a p r i o r i  information in a way which appears to be 
more promising than in previous methods and may find 
application for the structure solution of small as well as 

From the joint probability distribution (13) the follow- 
ing conditional probability distributions are obtained: 

(a) P(EIIE2,E3,Ep,,Ev2,Ev3) (1 
~ (2~b,) - in  exp - - ~  (E l - Ep,) 2 

+ ~ (El - E , . ) ( E ~ -  E . ) ( E 3  - E,3) . (A 1) 
b, b 2 b 3 

from which (14) arises; 

(b) e(E~.e~lel .e , . .e: .e . )  

(E 2 -- E;2) 2 (E 3 - -  Ep3) 2 
-- (270-' ( b  2 b3) -1/2 exp -- ~ 2  - 2 b 3  

+ - -  ( E l -  E ~ I ) ( E 2 -  E : ) ( E 3  - E . )  . (A2) 
bl b2 b3 

from which (15) arises. 

APPENDIX B 

From the joint probability distribution (19) the follow- 
ing conditional probability distributions are obtained: 
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(a) P(~I, qh, ¢3[Ri, Rp~, ~Ppt, i = 1, 2, 3) 

1 I~_~2 2C 
~__. ~ exp ~ RiRpi cos(~o i - ~opi) + ~ 

L ~=I 

× [RIR2R3 COS(el -[- ¢2 -[- ¢3) 

-Rp, R2Ra c°s(tPpI + ¢2 + tP3) 

-RIRp2R 3 cos(tp, + tpp 2 + ¢3) 

- -  R 1 R 2 Rp3 cos (~01 + ¢2 + ~0p3) 

+ RplRpER3 COS(~Opl + (Pp2 + (P3) 

+ RplR2Rp3 cos(tPpl + (o2 + ~op3) 

+ R I Rp2 Rp3 cos ((01 + ~op2 + ~op3)] I ; (B 1) 

(b) P(R2 ,R3 ,  tp2, tP3lR1, ~o~, Rpt, ~ou~, i =  1, 2, 3) 

/ ~  1 2e 
~__ 7~-2(b2b3)-l R2R3 exp ~ IE t -Epi 12 + 

k i=2  blb2b3 

x Re[(E I -- Ep,)(E 2 -- Ep2)(E 3 - Ep3)l } , (B2) 

where Re stands for 'real part of' and 

I E -  Epl2= R 2 + R 2 -- 2RRp cos (tp- tpp). 

From (B2) the expected value (20) arises; 

(c) P(R t, (PilR2, R3, ¢2, ~3, Rpi, ~pi, i - -  1, 2, 3) 

1 2c 
~-- (~bl)-lR1 exp --~-1 I L l -  EpII2 + - - b ,  b E b 3 

x Re[(E, -  Epi)(E 2 - Ep2)(E 3 - Epa)l }, (B3) 

from which (2 i) arises. 

bl b2 b3 

APPENDIX C 

Let us apply (28) when m = 2 and when k, h + k are 
the generating reciprocal vectors. It is supposed that 
Eh, Ep.h, Ep, k, Ep, h+ k is the a priori available 
information. We obtain: 

((EklEh, Ep, h, Ep.k, Ep, h+ k) > = Ep, k 

((Eh+k]...)>=Ep.~+k 

<IEki2[...> -- (IEh+ kl2l...> = I 

according to which 

((E k -  (Ek>)2> = I - lEp, k[2; 

((Eh+ k -- (Eh+ k>)2> = I -- [Ep.h+ k[2; 

c 
((Ek-- (Ek>) (Eh +k -- (Eh + k>)> = ~ (Eh -- E;, h)- 

b(h) 

Correctly, the variances of E k and E h + k vanish if IEv, k I 
and [gp, h+k[ equal unity. Indeed, that occurs only if 
p = N. The same observation holds for the covariance 
term. 

The value of D E is then 

i i D 2 -- (I -Ifp, kl 2) (I --Ifp, h + k 12) -- ~ (g  h - fp, h) 

so that 

P(Ek, Eh + klEh, Ep, h, Ep, k, Ep.h + k) 

{ I(1--Ep2'h+k) [(Ek__Ep, k)2 
(270 -1 D21/2 exp 2 D 2 

( 1 - - E 2 k )  
+ (Eh + k -- Ep, h + k) 2 

Dz 

2c 
- -  (E h - Ep, h)(E k - Ep, k) 
D2b(h) 

X (Eh+k--Ep, h+k)]}. 

The sign probability for E h + k may be calculated by a 
statistical regression o f E  h ÷ k on E k. We obtain 

[IEh+k' [ D2 P+(Eh+ k) ~- ½ + ½ tanh t Ep, h+ k 

c (Eh_Eph)(Ek_Epk)]} " + " 
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